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ABSTRACT
A novel, fast, and approximate forward modelling routine for time-domain electro-
magnetic responses is presented. It is based on the separation of the forward problem
into a configuration-independent part, mapping conductivity as a function of depth
onto apparent conductivity as a function of time, and a configuration-dependent part,
i.e., the half-space step response. The response of a layered model is then found as
the half-space response for a half-space conductivity equal to the apparent conduc-
tivity. The mapping is ten times faster than traditional accurate forward modelling
routines, and through stochastic modelling, it is found that the standard deviation
of the modelling error is 0.7 %. The forward mapping lends itself to integration in
a modern state-of-the-art inversion formulation in exactly the same way as tradi-
tionally computed responses, and a field example is included where inversion results
using the approximate forward response are compared with those of an accurate
forward response for helicopterborne transient electromagnetic data. In addition to
being used in its own right in inversion of transient data, the speed and accuracy
of the approximate inversion mean that it is well suited for quality control and fast
turnaround data delivery of survey results to a client. It can also be used in hybrid
inversion formulations by supplying initial iterations and high-quality derivatives in
an inversion based on accurate forward modelling.

INTRODUCTIO N

The transient electromagnetic (TEM) method, particularly
airborne TEM, has become one of the most widespread
electromagnetic (EM) methods for a wide variety of purposes:
mineral prospecting, geotechnical investigations, and hydro-
geophysical surveys, to mention the most important areas
of application (Fittermann and Stewart 1986; Hoekstra and
Blohm 1990; Macnae 1997, 2007; Christensen and Sørensen
1998; Auken et al. 2006). Inversion with 1D models, most of-
ten with lateral smoothness constraints (Viezzoli et al. 2008),
is still the most widely used approach to the inversion of TEM
data, provided of course that 1D inversion is justified by a
moderate lateral rate of change of conductivity. 1D inversion
based on accurate forward responses calculated as inverse
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Fourier (or Laplace) transforms and Hankel transforms of
kernel functions in the frequency (Laplace)/wavenumber
domain (Ward and Hohmann 1987) is no longer a heavy
computational problem due to the immense increase in cheap
computing power. However, Moore’s law has also been
valid for the increase in the density and overall volume
of EM geophysical data. Currently, regional surveys will
produce millions, even tens of millions of soundings, and fast
inversion based on approximate responses can still be very
useful.

In the process of diffusion of transient EM fields into
the ground, the diffusion depth and diffusion velocity depend
on the subsurface conductivity structure. A number of imag-
ing methods have been suggested, which are based on the
variation of the diffusion velocity with conductivity (Nekut
1987; Macnae and Lamontagne 1987; Eaton and Hohmann
1989; Macnae et al. 1991). These algorithms find the depth
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to an equivalent current filament — an “image” of the
source — as a function of time, from which the diffusion
velocity and thereby the conductivity can be found. The con-
ductivity is then ascribed to a depth equal to the image depth
scaled with an ad hoc factor to produce the best results. In
(Macnae and Lamontagne 1987) a number of such images
are used instead of just one. Christensen (1995) presented an
imaging method based on the all-time apparent conductivity
of the step response, a method that was extended to the 2D
case in Christensen (1997). The conductivity–depth imaging
of Stolz and Macnae (1997) was based on the step response,
and the paper by Stolz and Macnae (1998) presented a method
for reducing arbitrary waveform TEM data to a step response.
Polzer (1985) considered time as a function of the magnetic
field and developed a theory for inversion of the arrival time
data of a certain amplitude of the magnetic field. Using a lin-
ear approximation to the Fréchet kernel, a one-step imaging
inverse was developed, where the diffusion depth was scaled
according to the arrival time of a reference model, a homo-
geneous half-space. This scaling of the arrival-time Fréchet
kernel is completely equivalent to the one-pass imaging al-
gorithm of Christensen (1995) with scaling according to the
all-time apparent conductivity.

The basic principles in 1D approximate inversion have
also been extended to approximate 2D and 3D problems.
Liu and Asten (1993) presented a fast approximate for-
ward modelling method for 3D thin-sheet models buried
in the second layer of a 2-layer earth. Wolfgram, Chris-
tensen and Sattel (2003) develop a two-stage approach to
approximate 2D inversion of TEM data by combining tra-
ditional 1D inversion with an approximate 2D inversion
of the 1D conductivity model sections based on an ap-
parent conductivity definition. Their approach was refined
by Christensen and Wolfgram (2006) through a formula-
tion of the approximate 2D inversion as a deconvolution,
mapping a 1D model section into a 2D model section.
Transforming EM fields to magnetic moments, Schaa and
Fullagar (2010) have developed a fast approximate 3D in-
version scheme capable of including geological constraints.

Some of the fast interpretation algorithms must be char-
acterized as basically data transformations, and many of them
involve deconvolution steps. However, deconvolution is an
inherently unstable operation, and there is a clear advantage
of formulating the approximate inversion problem through
an approximate forward mapping (Christensen 2002). In this
way, the approximate forward response can be combined with
modern inversion schemes and profit from a general and well-
understood mathematical formulation.

In this paper, I present a fast and approximate forward
modelling routine for time-domain EM responses. The
forward mapping is based on a separation of the forward
problem into a configuration-independent part, mapping
conductivity as a function of depth onto apparent conductiv-
ity as a function of time, and a configuration-dependent part,
i.e., the half-space step response. The response of a layered
model is then found as the half-space response for a half-
space conductivity equal to the apparent conductivity. The
accuracy is documented through stochastic modelling and
analysis of the statistical properties of the modelling error,
and the accuracy is compared with that of the more simple
approximate mapping of Chistensen (2002) and Christensen,
Reid, and Halkjær (2009). Finally, the forward mapping is
integrated in an inversion program, and the results of its
application on helicopter-borne TEM data acquired with
the SkyTEM system from the Broken Hill Managed Aquifer
Recharge (BHMAR) project in Australia are compared with
inversion with an accurate forward response. Finally, the
options of hybrid solutions combining an accurate forward
response with approximate derivatives are discussed.

APPROXIMATE FORWARD MODELLING
OF TRANSIENT ELECTROMAGNETIC
RESPONSES

The new approximate mapping that is the main focus of
this paper shares some basic characteristics with the more
simple forward modelling routine of Christensen (2002) and
Christensen et al. (2009). For completeness and due to the
simpler approximate mapping playing an important role in
the new and more accurate approximate mapping, a short
overview of the method is presented in the following.

An approximate forward mapping in time/space domain

A generic and approximate forward modelling for transient
step responses was presented by Christensen (2002) and
Christensen et al. (2009). The entire forward mapping from
conductivity as a function of depth σ (z) to step response as a
function of time Bstep

L (t) consists of two consecutive steps:

(i) a mapping from conductivity as a function of depth to
apparent conductivity as a function of time: σ (z) → σa(t);
(ii) a substitution of the apparent conductivity σa(t) into a
half-space step response: Bstep

L (t) = Bstep
HSP (t, σa(t)).

The latter part of the mapping follows from the definition
of apparent conductivity as the conductivity of a half-space
for which the response will be the same as the layered re-
sponse at the delay time in question. The first part of the
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Figure 1 Plots of the weight function of equation (5) (left) and of the integrated weight function of equation (4) (right) for the three diffusion
depths of 1/θ = 5 m (black), 1/θ = 20 m (dark gray), and 1/θ = 80 m (light gray).

mapping, σ (z) → σa(t), is generic, i.e., it is the same for all
transmitter–receiver (Tx–Rx) configurations and all field com-
ponents, and it is based on an analytic weight function in
the time/space domain. In the second mapping, Bstep

L (t) =
Bstep

HSP (t, σa(t)), the half-space step response is specific for the
configuration and field component in question. All half-space
step responses need only be calculated once at the program
start.

This first part of the mapping σ (z) → σa(t) is given by
the integral equation:

σa (t) =
∫ ∞

0
σ (z)w (z, t, σa (t)) dz, (1)

where w(·) is a weight function. Notice that w(·) depends on
the apparent conductivity. For a layered earth model with
N layers having conductivities σ1, σ2, . . . , σN and upper layer
boundaries z1, z2, . . . , zN ; z1 = 0.

σa (t) = σ1

∫ z2

z1

w (z, t, σa (t)) dz

+ σ2

∫ z3

z2

w (z, t, σa (t)) dz

+ · · · + σN

∫ ∞

zN

w (z, t, σa (t)) dz

= σ1 [1 − W (z2)] + σ2 [W (z2) − W (z3)]

+ · · · + σN [W (zN)] , (2)

where W(z, t, σa(t)) is the integrated weight function

W (z, t, σ ) =
∫ ∞

z
w(z′, t, σ ) dz′. (3)

The integrated weight function is chosen as

W(z, t, σ ) = erfc (θz), θ = c

√
μσ

t
, (4)

and the weight function w(·) is consequently given by

w(z, t, σ ) = 2θ√
π

exp(−θ2z2). (5)

In Fig. 1, the shapes of w and W are seen as a function of
depth for different delay times t.

The weight function defined above has continuous
derivatives, an attractive property in numerical manipula-
tions. The parameter c scales the depth extent of the weight
function. It is chosen to minimize the difference between the
approximate and an accurate forward response of a series of
test models, and a value of c = 1.033 was found to be the
best.

As mentioned above, the (integrated) weight function de-
pends on the apparent conductivity. In this way, the slower
diffusion through good conductors and the faster diffusion
through poor conductors is properly modelled; the map-
ping becomes model adaptive. The basic physics of the phe-
nomenon of diffusion of transient fields into the Earth is that
the fields diffuse slowly through good conductors and faster
through poor conductors. By letting the weight function de-
pend on the apparent conductivity, which is the average con-
ductivity of the part of the subsurface involved in the response,
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the modelling mimics the actual physical behaviour of diffu-
sion (Boerner 1990; Christensen 2014).

The price paid for the adaptive property of the mod-
elling, which is absolutely essential for the accuracy, is that
the mapping becomes iterative. For any delay time t, the
calculations are initialized with some estimate of the apparent
conductivity, σ = σ0, in equation (4), and using equation (2),
the apparent conductivity is obtained. The calculations are
then repeated by inserting this apparent conductivity into
equation (4), and the process is repeated until convergence.
Alternatively, observing the scaling properties of σa(t), i.e., w
and W are functions of delay time and half-space conductivity
only through the ratio σ/t, it is seen that, although the
apparent conductivity calculated after the first step for
σ = σ0: σa(t, σ0) may not be the apparent conductivity for
the delay time t that we eventually wish to obtain, it is the
correct apparent conductivity of some delay time, namely,
the time t′ given by the relation:

t′/σa = t/σ0 ⇒ t′ = t
σa

σ0
. (6)

Thus, by shifting the delay times according to (6), no
further iterations are needed.

This section has presented an approximate forward map-
ping procedure for transient methods based on the principles
presented in Christensen (2002), however with different and
better weight functions. In the following, it is referred to as
the simple approximate (SA) mapping. In the next section,
an improved approximate modelling algorithm is presented
based on the calculation of an apparent conductivity in the
wavenumber/space domain in which the above more simple
mapping plays the role of initializing the iterative procedure.

An approximate forward mapping in time/wavenumber
domain

In this section, an improved version of the approximate for-
ward mapping is presented based on the computation of ap-
parent conductivity in the time/wavenumber domain. The
forward mapping follows the same two-step process as out-
lined earlier, but the mapping from conductivity as a func-
tion of depth to apparent conductivity as a function of
time, σ (z) → σa(t), is different. To avoid the tongue-breaking
’WAvenumber domain approximate’ mapping, it will be re-
ferred to by the acronym WA. The WA forward response is
more accurate than that of the previous approximate mapping
and is ∼10 times faster than traditional computation methods.

The vertical magnetic field in the frequency domain for
a receiver with polar coordinates (r,−h) from a vertical mag-
netic dipole transmitter at a height H is given as (Ward and
Hohmann 1987):

Hz (r, z, ω) = m
4π

∫ ∞

0
[exp (u0h) + γ0 exp (−u0h)]

× exp (−u0 H)
λ3

u0
J0 (λr ) dλ. (7)

The first term in the brackets is the primary field, whereas
the second term expresses the secondary field. Assuming the
quasistatic approximation to be valid (u0 = λ), we have:

Hz (r, z, ω) = m
4π

∫ ∞

0
[exp (2λh) + γ0]

× exp [−λ (H + h)] λ2 J0 (λr ) dλ. (8)

The kernel function γ0 (the reflection coefficient) is ob-
tained through recursion from the bottom of the model, the
N’th layer, and up:

γn = exp
[−2 unbn

] γn+1 + ψn+1

1 + γn+1ψn+1
, γN = 0, hn = zn − zn−1,

h0 = 0

ψn+1 = un/ (iωμn) − un+1/
(
iωμn+1

)
un/ (iωμn) + un+1/

(
iωμn+1

) = un − un+1

un + un+1

if all μn = μ0 (9)

un =
√
λ2 + iωμσn. (10)

Expressing the time-domain field through an inverse
Laplace transform with s = iω as the Laplace variable, we
have for the step response:

Hz (r, z, t) = m
4π

∫ ∞

0
L−1

{
1
s

[exp(2λh) + γ0]
}

× exp[−λ (H + h)] λ2 J0 (λr ) dλ. (11)

As can be seen from the above equations, to arrive at
the transient fields in the time/space domain, we need to
perform two consecutive transformations: an inverse Laplace
transform to get from Laplace domain to time domain and a
Hankel transform to get from wavenumber domain to space
domain. The idea behind the WA mapping is to avoid the
Hankel transform by calculating the response for only one
wavenumber value carefully chosen to maximize the accuracy
of the overall computations.
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For a homogeneous half-space with conductivity σ , γ1 =
0, and γ HSP

0 becomes

γ HSP
0 = ψ1 = λ− u1

λ+ u1
⇒ 1 + γ HSP

0 = 2λ

λ+
√
λ2 + μσ s

= 2

1 +
√

1 + μσ s/λ2
. (12)

The apparent conductivity in the time/wavenumber do-
main for a layered model can then be defined as the con-
ductivity for which the time/wavenumber expression for the
homogeneous half-space is equal to the one for a layered
model, and it is found by equating the right-hand side of
equation (11) with the equivalent equation for a homogeneous
half-space:

m
4π

∫ ∞

0
L−1

{
1
s

[exp(2λh) + γ0]
}

× exp[−λ (H + h)] λ2 J0 (λr ) dλ

= m
4π

∫ ∞

0
L−1

{
1
s

[
exp(2λh) + γ HSP

0

]}

× exp[−λ (H + h)] λ2 J0 (λr ) dλ. (13)

Removing operators and factors that are identical for the
two expressions, we find:

L−1
{γ0

s

}
= L−1

{
γ HSP

0

s

}
⇒ L−1

{
1
s

[1 + γ0]
}

= L−1

{
1
s

[
1 + γ HSP

0

]}
, (14)

where the last derivation is chosen for the sake of numerical
convenience.

The inverse Laplace transform of the half-space expres-
sion can be found using Equation 29.3.37 of Abramovitz and
Stegun (1970):

Hz (u) = L−1

{
1
s

[
1 + γ HSP

0

]}

= L−1

{
1
s

2

1 +
√

1 + μσ s/λ2

}

Hz (u) = (1 + 2u2) erfc (u) − 2u√
π

exp(−u2),

u = λd = λ
√

t/ (μσ ). (15)

It is seen that γ HSP
0 is a function of (μσ s/λ2) and not of

the individual parameters s, σ , and λ, and consequently, the
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Figure 2 Plot of the time/wavenumber domain half-space response.

time-domain expression will be a function of u = λ · d = λ ·√
t/(μσ ), where d has the dimension of [m] and is a measure

of diffusion distance. A plot of the function Hz(u) in equation
(15) is seen in Fig. 2.

Half-Space responses - with their dependence on geo-
metrical Tx—Rx configuration and field component— can
now be calculated by substituting Hz(u) in the integral in
equation (7):

Hz (r, z, ω) = m
4π

∫ ∞

0
Hz (u) exp[−λ (H + h)] λ2 J0 (λr ) dλ

= m
4π

∫ ∞

0

[
(1 + 2u2) erfc (u) − 2u√

π
exp (−u2)

]

× exp[−λ (H + h)] λ2 J0 (λr ) dλ. (16)

If the transmitter is an extended circular loop with radius
a and not a magnetic dipole, we have (Ward and Hohmann
1987):

Hz (r, z, t) = m
4π

1
d3

∫ ∞

0

[
(1 + 2u2) erfc (u) − 2u√

π
exp (−u2)

]

× exp
(

−u
H + h

d

)
u2

[
J1

(
u a

d

)
1
2 u a

d

]
J0

(
u

r
d

)
du. (17)

The approximate modelling procedures presented in the
previous section and in here both need the half-space responses
for the actual instrument configuration to be calculated at
program start and subsequently used for interpolation. The
fact that the half-space response is analytically given in the
time/wavenumber domain means that the time/space expres-
sion can be calculated by performing only one transform, i.e.,
the Hankel transform from wavenumber to space domain.
This transform is performed using the fast Hankel transform
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filters by Christensen (1990) and can be calculated to essen-
tially any relevant accuracy for delay times between nanosec-
onds and hundreds of seconds. This, combined with the fact
that the approximate apparent conductivity is accurate for
very early and very late times, means that layered responses
can be calculated very accurately at practically all times. As
mentioned, the half-space responses are calculated only once
at the beginning of computations and then stored to serve as
lookup tables for subsequent computations.

The above derivations concern the step response. Impulse
responses can be found by numerical differentiation in the
time/space domain or by differentiating the kernel function
Hz(u) in the time/wavenumber domain with respect to time
before the Hankel transformation.

From the above, it is seen that the procedure of finding
the apparent conductivity in the time/wavenumber domain
for a delay time for any layered model is to recursively com-
pute γ0 in the Laplace/wavenumber domain, perform an in-
verse Laplace transform of [(1 + γ0)/s], and then solve to find
the conductivity, σ , that will make it identical to the half-
space expression. However, the expressions for both the
layered model and the homogeneous half-space contain the
wavenumber, λ, so there is an apparent conductivity for
every wavenumber. Our goal is to find an apparent conduc-
tivity in the time/wavenumber domain that is as close an ap-
proximation as possible to an accurate apparent conductivity
for the step response in the time/space domain, so that the
Hankel transform from wavenumber to space domain can
be dispensed with. The question is if it is possible to choose
a wavenumber so that this goal is achieved. It can be ar-
gued that the wavenumber should be the inverse of a typical
distance in the space domain, and an obvious choice would
then be a wavenumber equal to the inverse of the diffusion
distance, i.e., λa = 1/d = √

(μσ )/t. λa depends on the ratio
between the delay time and the conductivity: t/σ ; therefore, it
remains to choose a conductivity that is proper for the delay
time in question. Again, an obvious choice is the apparent
conductivity for that delay time: σa(t). However, the apparent
conductivity is the parameter we wish to find; therefore, the
procedure becomes iterative.

To sum up, for every delay time t, the procedure is the
following:

(i) Choose an initial apparent conductivity for that delay time,
σa ;
(ii) Choose the wavenumber λ = λa = 1/

√
t/(μσa);

(iii) For that wavenumber, compute L−1
{

1
s [1 + γ0]

}
for the

layered model;

(iv) Solve the equation L−1
{

1
s [1 + γ0]

} = Hz(u) to find u;
(v) Find the apparent conductivity so that λa

√
t/(μσa) = u;

(vi) Repeat steps (1) to (5) until σa does not change.

The inverse Laplace transform is obtained using the
Gaver–Stehfest algorithm (Knight and Raiche 1982). To
reduce the number of iterative steps in the above computation
procedure, the initial apparent conductivity must be chosen
as close to the final apparent conductivity as possible. This is
achieved by using the SA method of calculating the apparent
conductivity σ (z) → σa(t), presented in the previous section.
The calculation of the derivatives of the forward response
used in an inversion formulation is explained by Christensen
et al. (2009).

Accuracy of the approximate forward modelling routines

The accuracy of the approximate forward response is
determined by the accuracy of the apparent conductivity
computation. To verify the approximate modelling approach,
1,000 random 30-layer models with a top layer thickness of
1 m and a depth to the bottom layer of 200 m were created
as realizations of a random stochastic process by multiplying
the square root of a covariance matrix with a vector of
Gaussian-distributed random numbers rσ , with zero mean
and unit variance:

log ρi = log <ρ0
i > + δlog ρ

[√
Cm rσ

]
i
. (18)

The covariance matrix of the realizations is based on
a broadband covariance function; the same as the one used
in the regularization of the inversions in the following sec-
tions. Realizations were done in log(resistivity) with a mean
of log<ρ0> = log (50�m) for all layers and a standard devi-
ation of the perturbation of δlog ρ = 0.6. The resulting models
attain resistivities well below 1�m and above 1,000�m. In
Figure 3, two sample models are presented, and the responses
for an accurate mapping and the SA and WA mappings for
the sample models are shown in Fig. 4.

The step responses of the approximate responses were
compared with an accurate computation for all 1,000 models
using a traditional modelling approach with a Gaver–Stehfest
inverse Laplace transform (Knight and Raiche 1982) followed
by a Hankel transform (Christensen 1990). In Fig. 5, the stan-
dard deviation of the modelling error is shown for the two
approximate routines for delay times in the interval from 5μs
to 50 ms. It is seen that the WA mapping performs better than
the SA mapping. In Table 1, the statistics of the modelling
error averaged over all models and delay times is shown. The
standard deviations of the relative error are 1.1% and 0.72%
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Figure 3 The two sample models: stochastic model #666 (upper
curve) and the inversion model from the field example (lower curve)
from coordinate E612200, used in the comparison between accurate
and approximate responses in Figure 4.

for the SA and the WA mappings, respectively. These stan-
dard deviations must be compared with the noise levels of
transient data which, in general, are several times higher. The
maximum modelling errors are 11% and 5%, for the SA and
WA responses, respectively. It is seen that both mappings are
well behaved with a mean value of the relative error very close
to zero, i.e., they are without bias.

Computation times

The initial calculation of half-space step and impulse responses
for 100 different Tx heights at program start takes ∼ 0.8 s on
one thread of a 2-GHz CPU. Computation times for a 30-layer
model for the SA and the WA routines are 0.78 ms and 4.2 ms,
respectively. Compared with the computation time of 37.4 ms
for the traditional accurate modelling, the approximate map-
pings offer a speedup of a factor of 48 and 9, respectively.
These results are displayed in Table 2, and a further discus-
sion of the computation time issues will follow after the field
data inversion example in a following section.

INVERS ION FORMULATION

In this section, the use of the approximate forward WA re-
sponses in a state-of-the-art inversion formulation is demon-
strated. The inversion formulation is exactly the same as the
one that would be used with accurate forward responses.

Inversion methodology

There are numerous approaches to the inversion of EM data
with a 1D model consisting of horizontal, homogeneous and
isotropic layers. The one used with the WA modelling method
is a well-established iterative damped least squares approach
(Menke 1989). Formally, the model update at the n’th itera-
tion is given by
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Figure 4 Comparison between the forward step responses of the accurate mapping (full drawn curves), the simple mapping (SA) (dots), and the
WA mapping (circles) for stochastic model #666 (left frame), and one of the inversion models of the field example (right frame). In addition to
the step responses, the ratios between the SA and the accurate step response (dots) and between the WA response and the accurate step response
(circles) multiplied with an appropriate factor are shown in the plots.
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the SA mapping (black) and the WA mapping (gray) as a function of
delay time are shown with the full drawn curves. The maximum error
for the two mapping are shown as open circles.

Table 1 Statistics of the relative modelling error averaged over all
1,000 models and all 41 delay times. The Table lists the mean, the
median, the standard deviation, and the maximum of the absolute
value of the relative error for the SA and WA approximate mappings

ERROR STATISTICS Mean Median StdDev MaxError

SA mapping −0.00137 −0.00093 0.0106 0.1122
WA mapping −0.00013 −0.00063 0.0072 0.0519

mn+1 = mn +
[
GT

n C−1
obsGn + 1

σ 2
v

C−1
m

]−1

·

[
GT

n C−1
obs (dobs − g (mn)) + C−1

m (mprior − mn)
]
, (19)

where m is the model vector containing the logarithm of the
model parameters, G is the Jacobian matrix containing the
derivatives of the data with respect to the model parameters,
T is the matrix transpose, Cobs is the data error covariance
matrix, Cm is a model covariance matrix imposing a vertical
smoothness constraint on multi-layer models, dobs is the field
data vector, g(mn) is the nonlinear forward response vector
of the n’th model. In this study, as is most often the case, the
data noise is assumed uncorrelated, implying that Cobs is a
diagonal matrix.

The model parameter uncertainty estimate relies on a
linear approximation to the posterior covariance matrix Cest

given by

Table 2 Comparison of the computation times for a single forward
step responses in the SA and WA approximations and for a tradi-
tional accurate code. The table also shows the speedup factors for the
approximate responses

COMPUTATION TIMES Time [ms] Ratio relative to (3)

(1) SA step response 0.78 48
(2) WA step response 4.2 9
(3) Accurate step response 37.4 1

Cest =
[
GTC−1

obsG + 1
σ 2
v

C−1
m

]−1

, (20)

where G is based on the model achieved after the last itera-
tion. The analysis is expressed through the standard deviations
of the model parameters obtained as the square root of the
diagonal elements of Cest (e.g., Inman, Ryu, and Ward 1975).

The model covariance function, Cm, is based on a broad-
band von Karman covariance function and contains essen-
tially all correlation lengths, and it is used for its superior
robustness. For details, see Serban and Jacobsen (2001) and
Christensen et al. (2009).

AN INVERSION EXAMPLE FROM
T H E BH M A R D A T A S E T

I will compare the inversion results of using the WA, the SA,
and an accurate forward mapping on data from one line of the
helicopterborne transient data from the Broken Hill Managed
Aquifer Recharge (BHMAR) project. A total of ∼ 30,000 line
km of data were acquired in 2008 with the SkyTEM system
(Sørensen and Auken 2004) in a standard duel-moment mode
with gate centre times for the low moment between 16μs and
895μs and for the high moment between 85μs and 8.84 ms.

The aim of the BHMAR project was to map fresh and
brackish ground water resources in the BHMAR survey area
and to point out locations for managed aquifer recharge ex-
periments (Lawrie et al. 2012a,b). By implementing managed
aquifer recharge, water from annual/biannual large precipita-
tion events would not be lost to evaporation but stored under-
ground for use between the events whereby more water could
be left in the Darling–Murray river systems to improve the
reliability of domestic and industrial/agricultural water sup-
ply and the health of the rivers and the general environment.
In addition to the AEM data, the BHMAR project involved
borehole induction log data, lithological sampling, hydraulic
modelling, assessment of flora and fauna, and an extensive
geological interpretation including the effects of neotectonics
(Lawrie et al. 2012b).
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Figure 6 Model sections of a selected interval of a flight line of the BHMAR survey resulting from inversion with the SA approximation (top),
the WA approximation (centre), and an accurate inversion scheme (bottom). The top frame of the three subplots is the model section with the
measured Tx height in black and the inverted Tx height in red. The total residual (black) and data residual (red) are plotted below the model
sections.
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Table 3 Comparison of the computation times for the inversion of the 2,125 data sets comprising the model sections displayed in Fig. 6. In
addition to the SA, WA, and accurate inversions, the hybrid case of accurate forward responses combined with approximate derivatives is
shown. There are 2,125 data sets in each inversion run. Moreover, listed are the speedup factors relative to inversion options (3) and (4)

COMPUTATION TIMES Time [s] Ratio relative to (4) Ratio relative to (3)

(1) SA inversion 444 74 8.6
(2) WA inversion 735 45 5.2
(3) Accurate w / WA derivatives 3,834 8.5 1
(4) Accurate inversion 32,840 1 0.12

The comparison is made using present-day, state-of-the-
art, laterally correlated inversion using the Lateral Parameter
Correlation (LPC) method (Christensen and Tølbøll 2009;
Christensen et al., 2009), i.e., the model sections have been
subjected to both vertical and lateral constraints. For all three
inversion, the initial model was a half-space with a resistivity
of 20�m, a value of σv = 4 (equation (19)) was used for the
vertical constraints, and the transmitter height was included
as an inversion parameter. In Fig. 6, model sections in a se-
lected interval from the flight line are shown for the SA and
WA approximations and for an accurate inversion. Compu-
tation times for the laterally uncorrelated inversions for the
2,125 models shown in Fig. 6 are given in Table 2 together
with the computation time for a hybrid inversion consisting
of an accurate forward response combined with approximate
derivatives. All computation times refer to one thread of a
2.5-GHz CPU.

By comparing the three model sections, it is seen that
there is hardly any difference between the WA and the accu-
rate inversion; structures and resistivity levels are practically
identical. The SA inversion has the same depth to the top of
the uppermost good conductor, but the thickness of the top
conductor is generally smaller than for the other two inversion
schemes. The deeper structures are very similar to the other
two. It is also seen that the data residuals of the inversions
are much the same in all three cases. The fact that the WA in-
version results are almost indistinguishable from those of the
accurate inversion makes it a very attractive alternative that
can be used not only for an initial overview of the subsurface
resistivity distribution but also to deliver the final inversion.

Computation times

Table 3, shows the computation times for the laterally un-
correlated inversions of the 2,125 data sets comprising the
model sections of Fig. 6, together with the computation time
for a hybrid inversion consisting of an accurate forward
response combined with approximate derivatives. All com-

putation times refer to one thread of a 2.5-GHz CPU. In
comparison with Table 2, it is obvious that the speedup fac-
tors of individual forward responses cannot be maintained
when considering inversion. Significant parts of the inversion
calculations are used on matrix inversion and the convolu-
tions involved in calculating repetition, low-pass filters of the
receiver and the amplifier systems, and integration over the
time intervals of the gates.

Table 3 also shows computation times for a hybrid in-
version scheme consisting of an accurate forward response
combined with approximate derivatives. It is seen that the use
of approximate derivatives speeds up the computations with
a factor of almost an order of magnitude compared with an
all-accurate computation strategy. The models obtained for
the two options, indicated as (3) and (4) in Table 3, are in
essence identical; therefore, if traditional accurate computa-
tions are required for, e.g., contractual reasons, it is a very
attractive option to use the approximate derivatives pertain-
ing to the SA and WA approximations. However, a speedup
factor of 45 can be obtained with the WA approximation,
which also delivers models indistinguishable from the tradi-
tional accurate computations.

DISCUSS ION AND C ONCLUSION

I have presented a fast forward modelling approaches for
the calculation of transient electromagnetic (TEM) responses
based on a calculation of apparent conductivity in the
time/wavenumber domain. The method is about ten times
faster than traditional forward responses. Through stochastic
modelling, the standard deviations of the relative modelling
errors were found to be 0.7%, with mean errors very close to
zero, indicating that the error is unbiased. The method was
compared with the simpler approximate mapping, which is
50 times faster than that traditional calculations with a mod-
elling error of 1%.

Contemporary airborne TEM systems will often, when
used in large surveys, produce millions of data sets, and it
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is an appealing option to be able to invert the data using a
fast, approximate inversion procedure, particularly one that
is as accurate as the one presented in this paper. Data inversion
is also one of the best final stages of data quality control, and
an option to use a fast, but sufficiently accurate, approximate
method makes rapid delivery of survey results to the client
feasible within a 24–48 hour time frame.

It is well known that approximate forward responses,
when used in an inversion scheme, can produce model arte-
facts. However, compared with the data error normally at-
tributed to TEM data, the standard deviation of the modelling
error is negligible; smaller even than the likely uncertainty on
the data error. Moreover, the field example shows that the
WA inversion is almost identical to an accurate inversion and
that it does not introduce artifacts in the inverted models.

When evaluating and choosing an inversion approach, it
is not necessarily an either/or situation between an approxi-
mate or an accurate scheme. Although, it is evidently hard to
see the difference between the inversion results using an ap-
proximate and an accurate forward response, a hybrid scheme
can easily be realized in which approximate initial inversions
are followed by accurate ones. In this case, only very few com-
putationally more expensive iterations will be needed because
of the excellent quality of the approximate inversions. Another
hybrid option is to use the approximate derivatives together
with an accurate forward modelling routine. It is well doc-
umented (Boerner 1990; Farquharson and Oldenburg 1996
1999; Christensen 2014; Christiansen et al. 2015) that such
hybrid schemes work well, and in this case, the derivatives are
quite accurate.
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